Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38522829

ABSTRACT

Omitting or shortening the dry period may result in a fairly constant ration throughout the transition period of dairy cows, reducing the need for adaptation of cow metabolism and rumen function to a new lactation. The objective of this study was to determine the effect of dry period length on rumen adaptation and cow metabolic state during the transition period. Twelve pregnant, rumen-cannulated Holstein Friesian dairy cows at the end of their first lactation were assigned to one of 3 treatments: a conventional (60 d), short (30 d) or no dry period (0 d). At dry-off, cows received a dry cow ration until calving. Lactating cows received a lactation ration. Cows were monitored from 8 wk before calving until 8 wk after calving for milk yield and dry matter intake (DMI). Rumen biopsies were taken from 3 locations in the rumen at 60, 40 and 10 d before calving and 3, 7, 14, 28 and 56 d after calving to assess papillae dimensions. Blood was sampled weekly from 3 wk before until 8 wk after calving, and liver biopsies were taken at wk -2, wk 2 and wk 4 relative to calving. Prepartum, DMI and milk yield were greater for cows with a short or no dry period, compared with cows with a conventional dry period. Postpartum, DMI was greater for cows with a short dry period compared with cows with a conventional dry period. Plasma glucose concentration was greater for cows without a dry period, compared with the other dry period lengths postpartum. Plasma concentrations of nonesterified fatty acids and ß-hydroxybutyrate, and liver triglyceride content, did not differ among dry period. Rumen papillae differed in size based on biopsy location, but there was no interaction between biopsy location and the effect of dry period length. Rumen papillae surface area for cows managed for a 30 d or 60 d dry period decreased toward calving. At 40 d prepartum, papillae surface area was greater for short and no dry period treatment compared with a conventional dry period. At 10 d prepartum, papillae surface area was greater for the no dry period treatment compared with both other treatments, and this difference was still present 3 d postpartum. Cows managed for a short dry period showed faster increase in papillae dimensions after calving compared with cows managed for a conventional dry period. From d 28 onwards, no differences in papillae surface area were observed. The faster rumen adaptation postpartum may be related to the increased DMI during the first weeks postpartum for cows managed for a short dry period. However, this did not result in improved metabolic status or milk yield. The results from the present study demonstrate that the dietary changes related to a conventional dry period length affected rumen papillae development, not only prepartum but also early postpartum. Further optimization of dry period length as well as dietary composition throughout the transition period may support cows in their adaptation to a new lactation.

2.
J Dairy Sci ; 106(7): 4622-4633, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37225576

ABSTRACT

Seaweeds have been studied for their ability to reduce enteric methane emissions of ruminants when fed as a feed supplement. In vivo research with dairy cattle is mainly limited to the seaweed species Ascophyllum nodosum and Asparagopsis taxiformis, whereas in vitro gas production research covers a broader range of brown, red, and green seaweed species from different regions. The objective of the present study was to determine the effect of Chondrus crispus (Rhodophyta), Saccharina latissima (Phaeophyta), and Fucus serratus (Phaeophyta), 3 common northwest European seaweeds, on enteric methane production and lactational performance of dairy cattle. Sixty-four Holstein-Friesian dairy cattle (16 primiparous, 48 multiparous) averaging (mean ± standard deviation) 91 ± 22.6 d in milk and 35.4 ± 8.13 kg/d fat- and protein-corrected milk yield (FPCM) were randomly assigned to 1 of 4 treatments in a randomized complete block design. Cows were fed a partial mixed ration [54.2% grass silage, 20.8% corn silage, and 25.0% concentrate; dry matter (DM) basis] with additional concentrate bait in the milking parlor and the GreenFeed system (C-Lock Inc.). The 4 treatments consisted of a control diet without seaweed supplement (CON), or CON supplemented with 150 g/d (fresh weight of dried seaweed) of either C. crispus (CC), S. latissima (SL), or a 50/50 mix (DM basis) of F. serratus and S. latissima. Milk yield (28.7 vs. 27.5 kg/d, respectively), fat- and protein-corrected milk (FPCM) yield (31.4 vs. 30.2 kg/d, respectively), milk lactose content (4.57 vs. 4.52%, respectively), and lactose yield (1,308 vs. 1,246 g/d, respectively) increased for SL compared with CON. Milk protein content was lower for SL compared with the other treatments. Milk fat and protein contents; yields of fat, protein, lactose, and FPCM; feed efficiency; milk nitrogen efficiency; and somatic cell count did not differ between CON and the other treatments. Depending on week of experiment, milk urea content was higher for SL compared with CON and CC. No effects were observed of the treatments compared with CON for DM intake, number of visits to the GreenFeed, or gas emission (production, yield, or intensity) of CO2, CH4, and H2. In conclusion, the seaweeds evaluated did not decrease enteric CH4 emissions and did not negatively affect feed intake and lactational performance of dairy cattle. Milk yield, FPCM yield, milk lactose content, and lactose yield increased, and milk protein content decreased, with S. latissima.


Subject(s)
Lactation , Seaweed , Female , Cattle , Animals , Seaweed/metabolism , Lactose , Diet/veterinary , Zea mays/metabolism , Milk Proteins/analysis , Silage/analysis , Vegetables/metabolism , Methane/metabolism
3.
Animal ; 12(s2): s457-s466, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30139406

ABSTRACT

Improving milk nitrogen efficiency through a reduction of CP supply without detrimental effect on productivity requires usage of feeding systems estimating both the flows of digestible protein, the exported true proteins and from these predict milk protein yield (MPY). Five feeding systems were compared in their ability to predict MPY v. observed MPY in two studies where either protein supply or protein and energy supply were changed. The five feedings systems were: Cornell Net Carbohydrate and Protein System (v6.5.5), Dutch protein evaluation system (1991 and 2007), Institut National de la Recherche Agronomique in France (INRA), National Research Council and NorFor. The key characteristic of the systems with the best predicted MPY was the inclusion of a variable efficiency of utilisation of protein supply taking into account the supply of both protein and energy. The systems still using a fixed efficiency had the highest slope bias in their prediction of MPY. Therefore, the development of new feeding systems or improvement of existing systems should include a variable efficiency of utilisation of the protein related to both the protein and energy supply. The limitation of the current comparison did not allow determining if additional factors, as used in INRA, were beneficial. This concept should also probably be transferred to essential amino acids.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Dietary Proteins/metabolism , Milk Proteins/metabolism , Milk/chemistry , Nitrogen/metabolism , Animals , Diet/veterinary , Energy Intake , Female , Lactation
4.
J Anim Physiol Anim Nutr (Berl) ; 100(3): 526-31, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26331458

ABSTRACT

In in situ nylon bag technique, many feed evaluation systems use a washing machine method (WMM) to determine the washout (W) fraction and to wash the rumen incubated nylon bags. As this method has some disadvantages, an alternate modified method (MM) was recently introduced. The aim of this study was to determine and compare the W and non-washout (D+U) fractions of nitrogen (N) and/or starch of maize and grass silages, using the WMM and the MM. Ninety-nine maize silage and 99 grass silage samples were selected with a broad range in chemical composition. The results showed a large range in the W, soluble (S) and D+U fractions of N of maize and grass silages and the W, insoluble washout (W-S) and D+U fractions of starch of maize silages, determined by both methods, due to variation in their chemical composition. The values for N fractions of maize and grass silages obtained with both methods were found different (p < 0.001). Large differences (p < 0.001) were found in the D+U fraction of starch of maize silages which might be due to different methodological approaches, such as different rinsing procedures (washing vs. shaking), duration of rinsing (40 min vs. 60 min) and different solvents (water vs. buffer solution). The large differences (p < 0.001) in the W-S and D+U fractions of starch determined with both methods can led to different predicted values for the effective rumen starch degradability. In conclusion, the MM with one recommended shaking procedure, performed under identical and controlled experimental conditions, can give more reliable results compared to the WMM, using different washing programs and procedures.


Subject(s)
Chemical Fractionation/methods , Nitrogen/chemistry , Poaceae/chemistry , Silage/analysis , Starch/chemistry , Zea mays/chemistry , Food Analysis
5.
Animal ; 8(11): 1832-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25023203

ABSTRACT

Several in situ studies have been conducted on maize silages to determine the effect of individual factors such as maturity stage, chop length and ensiling of maize crop on the rumen degradation but the information on the relationship between chemical composition and in situ rumen degradation characteristics remains scarce. The objectives of this study were to determine and describe relationships between the chemical composition and the rumen degradation characteristics of dry matter (DM), organic matter (OM), CP, starch and aNDFom (NDF assayed with a heat stable amylase and expressed exclusive of residual ash) of maize silages. In all, 75 maize silage samples were selected, with a broad range in chemical composition and quality parameters. The samples were incubated in the rumen for 2, 4, 8, 16, 32, 72 and 336 h, using the nylon bag technique. Large range was found in the rumen degradable fractions of DM, OM, CP, starch and aNDFom because of the broad range in chemical composition and quality parameters. The new database with in situ rumen degradation characteristics of DM, OM, CP, starch and aNDFom of the maize silages was obtained under uniform experimental conditions; same cows, same incubation protocol and same chemical analysis procedures. Regression equations were developed with significant predictors (P<0.05) describing moderate and weak relationships between the chemical composition and the washout fraction, rumen undegradable fraction, potentially rumen degradable fraction, fractional degradation rate and effective rumen degradable fraction of DM, OM, CP, starch and aNDFom.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/physiology , Diet/veterinary , Digestion , Silage/analysis , Zea mays/chemistry , Animals , Female , Fermentation , Rumen/metabolism
6.
J Dairy Sci ; 96(7): 4310-22, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23664347

ABSTRACT

A meta-analysis was conducted on the effect of dietary and animal factors on the excretion of total urinary nitrogen (UN) and urinary urea nitrogen (UUN) in lactating dairy cattle in North America (NA) and northwestern Europe (EU). Mean treatment data were used from 47 trials carried out in NA and EU. Mixed model analysis was used with experiment included as a random effect and all other factors, consisting of dietary and animal characteristics, included as fixed effects. Fixed factors were nested within continent (EU or NA). A distinction was made between urinary excretions based on either urine spot samples or calculated assuming a zero N balance, and excretions that were determined by total collection of urine only. Moreover, with the subset of data based on total collection of urine, a new data set was created by calculating urinary N excretion assuming a zero N balance. Comparison with the original subset of data allowed for examining the effect of such an assumption on the relationship established between milk urea N (MUN) concentration and UN. Of all single dietary and animal factors evaluated to predict N excretion in urine, MUN and dietary crude protein (CP) concentration were by far the best predictors. Urinary N excretion was best predicted by the combination of MUN, CP, and dry matter intake, whereas UUN was best predicted by the combination of MUN and CP. All other factors did not improve or only marginally improved the prediction of UN or UUN. The relationship between UN and MUN differed between NA and EU, with higher estimated regression coefficients for MUN for the NA data set. Precision of UN and UUN prediction improved substantially when only UN or UUN data based on total collection of urine were used. The relationship between UN and MUN for the NA data set, but not for the EU data set, was substantially altered when UN was calculated assuming a zero N balance instead of being based on the total collection of urine. According to results of the present meta-analysis, UN and UUN are best predicted by the combination of MUN and CP and that, in regard to precision and accuracy, prediction equations for UN and UUN should be derived from the total collection of urine.


Subject(s)
Cattle/urine , Diet/veterinary , Lactation , Nitrogen/urine , Urea/urine , Animals , Cattle/metabolism , Dietary Proteins , Europe , Female , Milk/chemistry , Nitrogen/analysis , North America , Sensitivity and Specificity , Urea/analysis
7.
J Dairy Sci ; 94(1): 321-35, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21183042

ABSTRACT

Bulk milk urea concentration was evaluated to assess its potential as an indicator of ammonia emission from a dairy cow barn in a situation with restricted grazing. An experiment was carried out with a herd of, on average, 52 Holstein-Friesian dairy cows. The cows were housed in a naturally ventilated barn with cubicles and a slatted floor, were fed ensiled forages and feed supplements, and each day were allowed 8.5 h of grazing. The experiment was a balanced randomized block design, replicated 3 times. The experimental factor was the bulk milk urea level, which was adjusted to levels of 15, 35, and 55 mg of urea per 100 g of milk, respectively, by changing the level of nitrogen fertilization of the pasture, the herbage mass and grass regrowth age, and the level and type of feed supplement. Ammonia emission from the barn was measured using sulfur hexafluoride as the tracer gas. Ammonia emission generally increased upon an increase in adjusted milk urea levels. A dynamic regression model was used to predict ammonia emission from bulk milk urea concentration, temperature, and a slurry mixing index. This model accounted for 66% of the total variance in ammonia emission and showed that emission increases exponentially with increasing milk urea concentration. At levels of 20 and 30 mg of urea per 100 g of milk, ammonia emission increased by about 2.5 and 3.5%, respectively, when milk urea concentration increased by 1 mg/100 g. Furthermore, emissions from the barn increased 2.6% when temperature increased by 1°C. The study showed that bulk milk urea concentration is a useful indicator for ammonia emissions from a dairy cow barn in a situation with restricted grazing.


Subject(s)
Ammonia/analysis , Cattle/metabolism , Housing, Animal , Milk/chemistry , Urea/analysis , Animals , Eating , Environmental Pollutants/analysis , Temperature , Time Factors
8.
J Dairy Sci ; 88(3): 1099-112, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15738244

ABSTRACT

As the Dutch government and dairy farming sector have given priority to reducing ammonia emission, the effect of diet on the ammonia emission from dairy cow barns was studied. In addition, the usefulness of milk urea content as an indicator of emission reduction was evaluated. An experiment was carried out with a herd of 55 to 57 Holstein-Friesian dairy cows housed in a naturally ventilated barn with cubicles and a slatted floor. The experiment was designed as a 3 x 3 factorial trial and repeated 3 times. During the experiment, cows were confined to the barn (no grazing) and were fed ensiled forages and additional concentrates. The default forage was grass silage. The nutritional experimental factors were: (1) rumen-degradable protein balance of the ration for lactating cows with 3 levels (0, 500, and 1000 g/cow per d), and (2) proportion of corn silage in the forage ration for lactating cows with 3 levels (0, 50, and 100%) of forage dry matter intake. Several series of dynamic regression models were fitted. One of these models explained emission of ammonia by the nutritional factors and the temperature; another model explained ammonia emission by the bulk milk urea content and the temperature. The ammonia emission from the barn increased when levels of rumen-degradable protein balance increased. Furthermore, at a given level of rumen-degradable protein balance, the emission of ammonia correlated positively with the corn silage content in the forage ration. However, this correlation was not causal, but was the result of interaction between corn silage proportion and intake of ileal digestible protein. The bulk milk urea content and the temperature correlated strongly with the ammonia emission from the barn; the selected model accounted for 76% of the variance in emission. It was concluded that the emission of ammonia from naturally ventilated dairy cow barns was strongly influenced by diet. The emission can be reduced approximately 50% by reducing the rumen-degradable protein balance of the ration from 1000 to 0 g/cow per d. The milk urea content is a good indicator of emission reduction.


Subject(s)
Ammonia/analysis , Cattle/metabolism , Dietary Proteins/metabolism , Milk/chemistry , Rumen/metabolism , Urea/analysis , Animal Feed , Animals , Dietary Proteins/administration & dosage , Dose-Response Relationship, Drug , Environmental Pollutants , Female , Housing, Animal , Random Allocation , Regression Analysis , Temperature , Urine/chemistry
9.
J Dairy Sci ; 85(12): 3389-94, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12512611

ABSTRACT

Emission of NH3 from dairy barns can be reduced substantially by changing the cows' diet. Emission of NH3 is reduced most effectively when dietary changes result in a reduction of urinary urea concentration. The objective of this research was to predict NH3 emission from dairy barns for various diets, using feed characteristics, and climate, barn, and slurry related parameters. Model results were validated using experimental data. Cows were fed one of nine diets, which was a combination of three rumen degradable protein balances and one of three roughage compositions. Each diet was repeated once. Measured parameters included herd, diet, urine, slurry, barn and climate characteristics, and emission of NH3 from the barn. For a wide range of diets and barn conditions, observed NH3 emission from a dairy barn can be predicted accurately using a combination of existing nutrition-emission models. Accuracy of prediction improved considerably, however, when observed emissions during four diet treatments were omitted due to suspected technical failure of the emission measurement equipment. Results also show that NH3 emissions in common practical situations will range from about 3.3 to 16.3 kg per cow per 190 d. To reduce NH3 emission in practice, farmers should maximize the diet's grass content, and at the same time, minimize its rumen degradable protein balance level. Currently, however, farmers need additional information to compose such a low-emission diet, which should fulfill also the intestine digestible protein and net energy-lactation requirements of a cow.


Subject(s)
Ammonia/analysis , Cattle/metabolism , Diet , Housing, Animal , Urea/urine , Animals , Environmental Pollutants/analysis , Female , Regression Analysis , Temperature
10.
J Dairy Sci ; 85(12): 3382-8, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12512610

ABSTRACT

Urinary urea concentration is an important predictor of NH3 emission from dairy barns. To reduce urinary urea concentration, accurate and precise prediction of urea concentration for different feeding regimes is a prerequisite. The objective of this research, therefore, was to predict urinary urea concentration of a cow using feed characteristics. To compute urinary urea concentration of a cow, we predicted: urine volume; urinary N excretion, using a regression or a mechanistic model; and the relationship between urinary urea concentration and urinary N concentration, which was derived from experimental data. Model results were validated using experimental data. Cows were fed one of nine diets, which was a combination of one of three rumen-degradable protein balances, and one of three roughage compositions. Each diet was repeated once. Measured parameters included herd, diet, and urine characteristics. Observed urinary urea concentration can be predicted with reasonable accuracy from existing models to predict urine volume and urinary N excretion using feed characteristics. The regression model predicted N excretion slightly better than the mechanistic model. In addition, input parameters required for the regression model are recorded at each dairy farm in The Netherlands. This regression model, therefore, can be used by animal nutritionists and producers to determine diets that result in a reduced NH3 emission.


Subject(s)
Ammonia/analysis , Cattle/metabolism , Diet , Housing, Animal , Urea/urine , Animals , Cattle/urine , Environmental Pollutants/analysis , Female , Nitrogen/urine , Regression Analysis , Urine
SELECTION OF CITATIONS
SEARCH DETAIL
...